165 research outputs found

    Local Search Techniques for Constrained Portfolio Selection Problems

    Full text link
    We consider the problem of selecting a portfolio of assets that provides the investor a suitable balance of expected return and risk. With respect to the seminal mean-variance model of Markowitz, we consider additional constraints on the cardinality of the portfolio and on the quantity of individual shares. Such constraints better capture the real-world trading system, but make the problem more difficult to be solved with exact methods. We explore the use of local search techniques, mainly tabu search, for the portfolio selection problem. We compare and combine previous work on portfolio selection that makes use of the local search approach and we propose new algorithms that combine different neighborhood relations. In addition, we show how the use of randomization and of a simple form of adaptiveness simplifies the setting of a large number of critical parameters. Finally, we show how our techniques perform on public benchmarks.Comment: 22 pages, 3 figure

    The size of BDDs and other data structures in temporal logics model checking

    Get PDF
    Temporal Logic Model Checking is a verification method in which we describe a system, the model, and then we verify whether important properties, expressed in a temporal logic formula, hold in the system. Many Model Checking tools employ BDDs or some other data structure to represent sets of states. It has been empirically observed that the BDDs used in these algorithms may grow exponentially as the model and formula increase in size. We formally prove that no kind of data structure of polynomial size can represent the set of valid initial states for all models and all formulae. This result holds for all data structures where a state can be checked in polynomial time. Therefore, it holds not only for all types of BDDs regardless of variable ordering, but also for more powerful data structures, such as RBCs, MTBDDs, ADDs and SDDs. Thus, the size explosion of BDDs is not a limit of these specific data representation structures, but is unavoidable: every formalism used in the same way would lead to an exponential size blow up

    Accuracy of Author Names in Bibliographic Data Sources: An Italian Case Study

    Get PDF
    We investigate the accuracy of how author names are reported in bibliographic records excerpted from four prominent sources: WoS, Scopus, PubMed, and CrossRef. We take as a case study 44,549 publications stored in the internal database of Sapienza University of Rome, one of the largest universities in Europe. While our results indicate generally good accuracy for all bibliographic data sources considered, we highlight a number of issues that undermine the accuracy for certain classes of author names, including compound names and names with diacritics, which are common features to Italian and other Western languages

    Comments on: An overview of curriculum-based course timetabling

    Get PDF
    1noopenopenSchaerf, AndreaSchaerf, Andre

    Design, Engineering, and Experimental Analysis of a Simulated Annealing Approach to the Post-Enrolment Course Timetabling Problem

    Full text link
    The post-enrolment course timetabling (PE-CTT) is one of the most studied timetabling problems, for which many instances and results are available. In this work we design a metaheuristic approach based on Simulated Annealing to solve the PE-CTT. We consider all the different variants of the problem that have been proposed in the literature and we perform a comprehensive experimental analysis on all the public instances available. The outcome is that our solver, properly engineered and tuned, performs very well on all cases, providing the new best known results on many instances and state-of-the-art values for the others

    Computing the Shapley value in allocation problems: approximations and bounds, with an application to the Italian VQR research assessment program

    Get PDF
    In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximised, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. We describe useful properties that allow us to greatly simplify the instances of allocation problems, without affecting the Shapley value of any player. Moreover, we propose algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been implemented and tested on a real-world application of allocation problems, namely, the Italian research assessment program known as VQR (Verifica della Qualità della Ricerca, or Research Quality Assessment)1. For the large university considered in the experiments, the problem involves thousands of agents and goods (here, researchers and their research products). The algorithms described in the paper are able to compute the Shapley value for most of those agents, and to get a good approximation of the Shapley value for all of the

    Computing the shapley value in allocation problems: Approximations and bounds, with an application to the Italian VQR research assessment program

    Get PDF
    In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximized, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. In this paper, we first review the application of the Shapley value to an allocation problem that models the evaluation of the Italian research structures with a procedure known as VQR. For large universities, the problem involves thousands of agents and goods (here, researchers and their research products). We then describe some useful properties that allow us to greatly simplify many such large instances. Moreover, we propose new algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been tested on large real-world instances of the VQR research evaluation problem

    Tabu search techniques for the heterogeneous vehicle routing problem with time windows and carrier-dependent costs

    Get PDF
    Abstract In this work we formalize a new complex variant of the classical vehicle routing problem arising from a real-world application. Our formulation includes a heterogeneous fleet, a multi-day planning horizon, a complex carrier-dependent cost function for the vehicles, and the possibility of leaving orders unscheduled. We propose a metaheuristic approach based on tabu search and on a complex combination of neighborhood relations. Finally, we perform an experimental analysis to tune and compare different combinations, highlighting the most important features of the algorithm.

    Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem

    Full text link
    We consider the university course timetabling problem, which is one of the most studied problems in educational timetabling. In particular, we focus our attention on the formulation known as the curriculum-based course timetabling problem, which has been tackled by many researchers and for which there are many available benchmarks. The contribution of this paper is twofold. First, we propose an effective and robust single-stage simulated annealing method for solving the problem. Secondly, we design and apply an extensive and statistically-principled methodology for the parameter tuning procedure. The outcome of this analysis is a methodology for modeling the relationship between search method parameters and instance features that allows us to set the parameters for unseen instances on the basis of a simple inspection of the instance itself. Using this methodology, our algorithm, despite its apparent simplicity, has been able to achieve high quality results on a set of popular benchmarks. A final contribution of the paper is a novel set of real-world instances, which could be used as a benchmark for future comparison

    On the Shapley value and its application to the Italian VQR research assessment exercise

    Get PDF
    Research assessment exercises have now become common evaluation tools in a number of countries. These exercises have the goal of guiding merit-based public funds allocation, stimulating improvement of research productivity through competition and assessing the impact of adopted research support policies. One case in point is Italy's most recent research assessment effort, VQR 2011–2014 (Research Quality Evaluation), which, in addition to research institutions, also evaluated university departments, and individuals in some cases (i.e., recently hired research staff and members of PhD committees). However, the way an institution's score was divided, according to VQR rules, between its constituent departments or its staff members does not enjoy many desirable properties well known from coalitional game theory (e.g., budget balance, fairness, marginality). We propose, instead, an alternative score division rule that is based on the notion of Shapley value, a well known solution concept in coalitional game theory, which enjoys the desirable properties mentioned above. For a significant test case (namely, Sapienza University of Rome, the largest university in Italy), we present a detailed comparison of the scores obtained, for substructures and individuals, by applying the official VQR rules, with those resulting from Shapley value computations. We show that there are significant differences in the resulting scores, making room for improvements in the allocation rules used in research assessment exercises
    • …
    corecore